Stratospheric Ozone in the Post-CFC Era
نویسندگان
چکیده
Vertical and latitudinal changes in the stratospheric ozone in the post-chlorofluorocarbon (CFC) era are investigated using simulations of the recent past and the 21st century with a coupled chemistry-climate model. Model results reveal that, in the 2060s when the stratospheric halogen loading is projected to return to its 1980 values, the extratropical column ozone is significantly higher than that in 1975-1984, but the tropical column ozone does not recover to 1980 values. Upper and lower stratospheric ozone changes in the postCFC era have very different patterns. Above 15 hPa ozone increases almost latitudinally uniformly by 6 Dobson Unit (DU), whereas below 15 hPa ozone decreases in the tropics by 8 DU and increases in the extratropics by up to 16 DU. The upper stratospheric ozone increase is a photochemical response to greenhouse gas induced strong cooling, and the lower stratospheric ozone changes are consistent with enhanced mean advective transport due to a stronger Brewer-Dobson circulation. The model results suggest that the strengthening of the Brewer-Dobson circulation plays a crucial role in ozone recovery and ozone distributions in the post-CFC era.
منابع مشابه
Impact of cosmic rays on stratospheric chlorine chemistry and ozone depletion.
Dissociation induced by cosmic rays of chlorofluorocarbons (CFC) and HCl on the surfaces of polar stratospheric clouds (PSC) has been suggested as playing a significant role in causing the ozone hole. However, observed stratospheric CFC distributions are inconsistent with a destruction of CFC on PSC surfaces and no significant correlation exists between ozone levels and cosmic-ray activity insi...
متن کاملStratospheric Loss and Atmospheric Lifetimes of CFC-11 and CFC-12 Derived From Satellite Observations
The lifetimes of CFC-11 and CFC-12 have been evaluated using global observations of their stratospheric distributions from satellite-based instruments over the time period from 1992 to 2010. The chlorofluorocarbon (CFC) datasets are from the Cryogen Limb Array Etalon Spectrometer (CLAES), the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA-1 and CRISTA2), the Michelso...
متن کاملToxicology of chlorofluorocarbon replacements.
Chlorofluorocarbons (CFCs) are stable in the atmosphere and may reach the stratosphere. They are cleaved by UV-radiation in the stratosphere to yield chlorine radicals, which are thought to interfere with the catalytic cycle of ozone formation and destruction and deplete stratospheric ozone concentrations. Due to potential adverse health effects of ozone depletion, chlorofluorocarbon replacemen...
متن کاملStratospheric lifetimes of CFC-12, CCl4, CH4, CH3Cl and N2 from measurements made by the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS)
Long lived halogen-containing compounds are important atmospheric constituents since they can act both as a source of chlorine radicals, which go on to catalyse ozone loss, and as powerful greenhouse gases. The long-term impact of these species on the ozone layer is dependent on their stratospheric lifetimes. Using observations from the Atmospheric Chemistry Experiment Fourier Transform Spectro...
متن کاملThe impact of anthropogenic chlorine emissions, stratospheric ozone change and chemical feedbacks on stratospheric water
Mixing ratios of water (H2O) in the stratosphere appear to increase due to increased input of H2O and methane from the troposphere and due to intensified oxidation of CH4 in the stratosphere, but many of the underlying mechanisms are not yet understood. Here we identify and quantify three chemical mechanisms which must have led to more efficient oxidation of CH4 in the stratosphere over the pas...
متن کامل